The Weliky group specializes in solid-state NMR spectroscopy with particular application to biological systems. Solid-state NMR is a powerful approach to structural and dynamical measurements on biological molecules and is particularly useful for studies in non-crystalline environments such as membranes and bacterial inclusion bodies. We spend about 80% of our effort on applications and 20% of our effort on new methods development. Our research includes physical, analytical, organic, and biological chemistries.
We are currently studying the structure of the membrane-associated HIV gp41 envelope protein. One project focuses on the fusion peptide region of gp41, which is required for viral/host cell membrane fusion. We are studying this peptide as well as the whole gp41 protein in the most biologically relevant membrane environment. Our goal is to better understand the structural basis of membrane fusion which should be useful for designing new AIDS therapeutics. We also have a related project on the influenza virus fusion protein.
A second area is the structure of recombinant proteins in bacterial inclusion bodies. Academic and pharmaceutical laboratories commonly produce large quantities of a protein by introducing the gene for this protein into E. coli bacteria and having the bacteria make the protein. A common problem is sequestration of the foreign protein in non-crystalline solids termed inclusion bodies. Better understanding of the protein structure in inclusion bodies should lead to better methods of obtaining useful protein from inclusion bodies.